25. Synthese cyclischer Depsipeptide durch direkte Amid-Cyclisierung: 12gliedrige Depsipeptide mit alternierender Sequenz von α-Hydroxy- und α-Aminosäuren

von Daniel Obrecht¹) und Heinz Heimgartner*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(6.XII.89)

Synthesis of Cyclic Depsipeptides *via* Direct Amide Cyclization: Cyclic Depsipeptides with 12-Ring Atoms and Alternating Sequence of α-Hydroxy and α-Amino Acids

The reaction of 3-(dimethylamino)-2,2-dimethyl-2*H*-azirine (1; $R^1 = R^2 = R^3 = R^4 = Me$) with α -hydroxycarboxylic acids, followed by selective hydrolysis of the terminal dimethylamide group yields the dipeptide analogues **15a** and **18b** (*Schemes 3* and 4). After protection of the OH group (\rightarrow **16a** and **19**, resp.), coupling with the C-terminus-protected derivatives **14** and **18a**, respectively, by a modified 1,1'-carbonyldiimidazole procedure followed by hydrolysis gives the linear depsipeptides **17c** and **20**, respectively. Treatment with HCl gas in toluene at 100° leads to the cyclic depsipeptides **21** and **22** in very good yield. The two model reactions show that the 'azirine/oxazolone-method', combined with the 'direct amide cyclization', is a versatile procedure for the synthesis of cyclic depsipeptides containing α, α -disubstituted α -amino acids.

1. Einleitung. – In den vergangenen Jahren haben wir verschiedentlich über die Verwendung von 3-Amino-2*H*-azirinen 1 als Aminosäure-Bausteine in der Peptidsynthese berichtet [1–9] (vgl. auch [10]). Bei dem als 'Azirin/Oxazolon-Methode' bezeichneten Verfahren wird eine Aminosäure oder ein Peptid 2 durch Umsetzung mit 1 um eine α, α -disubstituierte α -Aminosäure verlängert, die terminale Amid-Gruppe des Produktes 3 selektiv hydrolysiert und das verlängerte Peptid unter Zusatz von Additiven wie z.B. ZnCl₂ oder Campher-10-sulfonsäure mit einer weiteren Amino-Komponente gekuppelt (Schema 1).

¹) Teil der Dissertation von D.O., Universität Zürich, 1983; gegenwärtige Adresse: Zentrale Forschungseinheiten der F. Hoffmann-La Roche AG, CH-4002 Basel.

Sowohl die selektive Hydrolyse von 3 zu 4 als auch die Kupplungsreaktion mit $R'NH_2$ zu 5 verlaufen *via* ein als Zwischenprodukt gebildetes 1,3-Oxazol-5(4H)-on [1][5][11] (vgl. [12]).

Von besonderem Interesse ist die Erweiterung der selektiven Hydrolyse zu einer allgemeinen Umfunktionalisierung, die es erlaubt, direkt Ester (z.B. Phenylthio-ester) zu erhalten [1][13]. Die intramolekulare Variante dieser Reaktion führt zu einem Ringschluss, wobei sowohl cyclische Depsipeptide 8 [2][4] als auch Lactone 11 [14] hergestellt werden können (s. $6 \rightarrow 7 \rightarrow 8$ bzw. $9 \rightarrow 10 \rightarrow 11$ in *Schema 2*). Sehr erfolgreich ist diese 'Amid-Cyclisierung' z.B. zur Herstellung des Depsipeptids cyclo[(S)-Pms-D-Pro-Ala-Aib] eingesetzt worden [4] (Pms = 3-Phenylmilchsäure; Aib = 2-Methylalanin = 2-Aminoiso-buttersäure).

Wir haben uns die Frage gestellt, ob die Reaktionsbedingungen der 'direkten Amid-Cyclisierung' auch für den Ringschluss alternierender Sequenzen von α -Hydroxy- und α -Aminosäuren geeignet sind. Das Hauptproblem schien dabei das Vorliegen einer säurelabilen Ester-Gruppe im offenkettigen Vorläufer zu sein. Als Zielmoleküle für die Modellversuche wurden 12gliedrige cyclische Depsipeptide vom Typ **12** gewählt, wobei der Ringschluss *via* Bildung einer Lacton-Gruppe erreicht werden sollte.

Diese Modellverbindungen interessierten uns besonders, weil cyclische Depsipeptide, die alternierend (*R*)- α -Hydroxy- und (*S*)- α -Aminosäuren enthalten, als natürliche Ionophore, die sogenannten Enniatine [15–18], vorkommen. So weist z.B. Enniatin B, ein natürliches Antibiotikum, dreimal die Einheit [(*R*)-2-Hydroxy-3-methylbutanoyl- N^{α} methyl-L-valyl] ((*R*)- α -HyIv-MeVal) auf (s. [19] und dort zit. Lit.).

2. Synthese der offenkettigen Vorläufer. – Wie in vorangehenden Arbeiten [3][8] gezeigt worden ist, reagieren ungeschützte α -Hydroxysäuren schon bei Raumtemperatur mit 3-Amino-2*H*-azirinen 1 zu Diamiden [19]. Die in *Schema 3* skizzierte Umsetzung von (*R*)-Mandelsäure ((*R*)-Mns; 13) mit 3-(Dimethylamino)-2,2-dimethyl-2*H*-azirin (1; R¹ = R² = R³ = R⁴ = Me) lieferte in 94% Ausbeute das Diamid 14 [3][19]. Die Hälfte davon wurde in MeCN/H₂O 4:1 gelöst und durch Einleiten von HCl-Gas bei 60–70° hydrolysiert,

wobei die Säure **15a** in 96% Ausbeute anfiel. Die Überführung in das Tetrahydropyranyl(Thp)-geschützte Derivat **16a** erfolgte durch Behandlung von **15a** mit 3,4-Dihydro-2*H*-pyran (Dhp) in MeCN und HCl (s. [20] [21]). Das rohe, getrocknete **16a** wurde in THF gelöst und mittels der 'Imidazolid-Methode' (vgl. [22]) mit **14** zu **17a** gekuppelt. Als Base bewährte sich dabei Natrium-imidazolid. Das offenkettige Depsipeptid **17c** wurde nach wässriger Hydrolyse von **17a** in 83% Ausbeute als DC-einheitliches, zähes Öl erhalten, das nach Chromatographie analysenrein anfiel.

Zur Herstellung des (*tert*-Butyl)-geschützten Derivates **16b** wurde wie folgt verfahren: Durch eine MeOH-Lösung von **14** wurde 2 min HCl-Gas geleitet, wobei sich die Lösung auf *ca*. 60° erwärmte. Nach üblicher Aufarbeitung wurde der Methylester **15b** in 95% Ausbeute erhalten, mit 2-Methylprop-1-en/H₂SO₄ in CH₂Cl₂ behandelt und das Produkt mit 1N NaOH verseift. Nach Aufarbeitung mit NaH₂PO₄ wurde **16b** in 85% Ausbeute isoliert. Die Kupplung mit **14** zum Depsipeptid **17b** gelang wiederum mit der 'Imidazolid-Methode' und lieferte 64% kristallisiertes Produkt.

In analoger Weise wie 17c wurde das Depsipeptid 20 aus (S)-Phenylmilchsäure ((S)-Pms) und 1 ($\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{R}^3 = \mathbb{R}^4 = \mathbb{M}e$) synthetisiert (*Schema 4*). Die terminale Amid-Gruppe des Kupplungsproduktes (S)-Pms-Aib-NMe₂ (18a) wurde selektiv hydrolysiert (\rightarrow 18b) und die OH-Gruppe als Thp-Derivat geschützt (\rightarrow 19). Die Kupplung von 18a und 19 mit 1,1'-Carbonyldiimidazol (CDI) und Natrium-imidazolid, gefolgt von wässriger Hydrolyse, führte in 86% Ausbeute zu 20.

3. Cyclisierung der offenkettigen Depsipeptide. – Wie in vorangehenden Arbeiten [2][4] beschrieben worden ist, wurde auch im Falle der Depsipeptide 17c und 20 versucht, den Ringschluss durch direkte Amid-Cyclisierung unter sauren Bedingungen zu erreichen. Dazu wurde durch eine Suspension von 17c in absolutem Toluol bei 100° während 7 min HCl-Gas geleitet. Dabei bildete sich eine klare Lösung, aus der nach Abtrennung von $Me_2NH \cdot HCl$ in 88% Ausbeute das Depsipeptid cyclo[(R)-Mns-Aib-(R)-Mns-Aib] (21) erhalten wurde (Schema 5).

Unter analogen Bedingungen wurde das offenkettige Depsipeptid **20** in 85% Ausbeute zu cyclo[(S)-Pms-Aib-(S)-Pms-Aib] (**22**) cyclisiert. Die Identifizierung der cyclischen Depsipeptide **21** und **22** gelang mit Hilfe ihrer spektralen Daten (s. *Exper. Teil*).

Besonderer Erwähnung bedürfen die NMR-Spektren. Im ¹H-NMR gibt sich der Übergang vom offenkettigen zum cyclischen Depsipeptid jeweils in einer Vereinfachung des Spektrums zu erkennen, was mit der Symmetrie der cyclischen Verbindungen zu erklären ist. Ebenso charakteristisch ist die Verschiebung des RCHOH-Signals nach tieferem Feld ($\Delta \delta \approx 0.8$ bzw. 0.9 ppm). Während das ¹³C-NMR-Spektrum von 22 in (D₆)DMSO bei 60° mit dem Vorliegen einer symmetrischen Verbindung in Einklang ist (nur je ein Signal für Lacton-C, Lactam-C, *etc.*), tritt im ¹³C-NMR-Spektrum von 21 ((D₆)DMSO, RT.) die doppelte Anzahl Signale auf. Wir schreiben dies dem Vorliegen zweier unterschiedlicher Konformationen zu, da beim Erwärmen der NMR-Probe auf *ca*. 80° nur noch halb so viele Signale erscheinen, was für eine symmetrische Verbindung oder den raschen Übergang der einen Konformation in die andere spricht.

Die unter sauren Bedingungen erreichten Cyclisierungen $17c \rightarrow 21$ und $20 \rightarrow 22$, bei denen eine Lacton-Gruppe gebildet wird, verliefen einheitlich, mit guten Ausbeuten und vollständig selektiv zur 12gliedrigen Ringverbindung. Die entsprechenden Morpholin-2,5-dione (vgl. [2]), die durch einen Ringschluss zwischen der endständigen OH-Gruppe und der Ester-Gruppe in den offenkettigen Depsipeptiden **17c** und **20** entstehen könnten, traten nicht in nachweisbarer Menge auf. Auf die hier beobachtete Selektivität der Cyclisierung beim Vorliegen eines C-terminalen *N,N*-Dimethylamids einer α, α -disubstituierten α -Aminosäure wurde schon bei den früher beschriebenen Cyclisierungen zu 9-, 12- und 15gliedrigen cyclischen Depsipeptiden hingewiesen [2][4][19].

Als Reaktionsmechanismus ist ein Verlauf via Zwischenprodukte mit aktivierter Säure-Funktion, wie z.B. A oder B (Schema 5), wahrscheinlich. Dabei muss sich, wie bei der selektiven Hydrolyse, säurekatalysiert ein endständiges 1,3-Oxazol-5(4H)-on bilden, das unter den stark sauren Bedingungen zu A protoniert wird. Als zweites Produkt wird dabei Me₂NH · HCl gebildet; Me₂NH wirkt somit in **17c** und **20** als Abgangsgruppe. Möglicherweise steht A mit dem Säurechlorid B im Gleichgewicht. Beide Zwischenprodukte sind für den Ringschluss geeignet.

4. Zusammenfassung und Diskussion. – In der vorliegenden Arbeit wird gezeigt, dass die *via* 'Azirin/Oxazolon-Methode' aus einer α -Hydroxy- und einer α -Aminosäure hergestellten Dipeptid-Analoga 16a und 19 mit Hilfe eines modifizierten CDI-Verfahrens in guten Ausbeuten zu den linearen Depsipeptiden vom Typ 17 bzw. 20 gekuppelt werden können. Ausserdem hat sich die 'direkte Amid-Cyclisierung' erneut als nützliches Verfahren für Lacton-Ringschlüsse erwiesen (vgl. [4]). Dabei sind zwei Punkte besonders erwähnenswert:

a) Die in Suspension durchgeführte, säurekatalysierte Cyclisierung verläuft mit guten Ausbeuten, ohne dass in hoher Verdünnung gearbeitet werden muss. Das 'Verdünnungsprinzip' [23] wird vermutlich bei der heterogenen Reaktionsführung trotzdem befolgt, da nur ein sehr kleiner Teil des Eduktes in Toluol gelöst vorliegt. Für die hohen Ausbeuten massgebend ist zudem der irreversible Verlauf des Aktivierungsschrittes (Bildung des 1,3-Oxazol-5(4*H*)-ons, *Schema 5*). Unter den stark sauren Reaktionsbedingungen fällt das abgespaltene Me₂NH sofort als Hydrochlorid aus und wird dadurch dem Gleichgewicht entzogen. Da dieses einzige Nebenprodukt zudem leicht abgetrennt werden kann, erfolgt die Aufarbeitung des cyclischen Depsipeptids unter sehr schonenden Bedingunen.

b) Die für die säurekatalysierte Umfunktionalisierung der terminalen Dimethylamid-Gruppe notwendigen Bedingungen führen nicht zur Spaltung der in den Depsipeptiden **17c** und **20** vorliegenden Ester-Gruppen. Dies ist insofern bemerkenswert, als sich diese – wie die endständige Dimethylamid-Gruppe – neben einem disubstituierten α -C-Atom befindet.

Bei der durch die Umsetzung mit Aminoazirinen 1 in die Peptid-Kette eingeführten Dimethylamid-Gruppe handelt es sich offenbar um eine geeignete Schutzgruppe für die Carboxyl-Funktion am C-Terminus von Peptid-Fragmenten mit α, α -disubstituierten α -Aminosäuren (vgl. Schemata 3–5), die nach dem Kupplungsschritt unter milden Bedingungen hydrolytisch entfernt werden kann. Wie vor kurzem gezeigt worden ist [6], lässt sich jedoch die N-Methylanilid-Gruppe noch milder entfernen und ist deshalb zu bevorzugen. Die hier an zwei Modellverbindungen demonstrierte Methode zur Synthese cyclischer 12gliedriger Depsipeptide mit alternierender Sequenz von α -Hydroxy- und α -Aminosäuren sollte sich auch für den Aufbau grösserer Ringe mit analogem Bau eignen. Dies wird zur Zeit insbesondere für die Synthese 18gliedriger (Enniatin-Analoga) und 24gliedriger Vertreter untersucht.

Wir danken Herrn H. Frohofer für IR-Spektren und Elementaranalysen, Frau Dr. A. Lorenzi und Herrn N. Bild für Massenspektren und Herrn Dr. R.W. Kunz für ¹³C-NMR-Spektren. Dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung, der F. Hoffmann-La Roche AG, Basel und der Prof. Hans-E.-Schmid-Stiftung sei für finanzielle Unterstützung gedankt.

Experimenteller Teil

Allgemeines. S. [7][24]. Wenn nicht anders vermerkt, IR-Spektren in KBr, NMR-Spektren in CDCl₃ bei 90 MHz und EI-MS bei 70 eV. Aib = 2-Methylalanin (= 2-Aminoisobuttersäure), CDI = 1,1'-Carbonyldiimidazol, Mns = Mandelsäure (= 2-Hydroxy-2-phenylessigsäure), Pms = Phenylmilchsäure (= 2-Hydroxy-3phenylpropionsäure), Thp = Tetrahydro-2*H*-pyran-2-yl.

1. (-)-(R)-2-(2-Hydroxy-2-phenylacetamido)-N,N,2-trimethylpropionamid ((R)-Mns-Aib-NMe,; 14). S. [3].

2. (-)-(R)-2-(2-Hydroxy-2-phenylacetamido)-2-methylpropionsäure ((R)-Mns-Aib-OH; 15a). S. [3].

3. (-)-(R)-Methyl-2-(2-hydroxy-2-phenylacetamido)-2-methylpropionat ((R)-Mns-Aib-OMe; **15b**). Durch eine Lsg. von 1,3 g (4,92 mmol) **14** in 25 ml MeOH wurde während *ca*. 2 min HCl-Gas geleitet, wobei sich die Lsg. auf 60–65° erwärmte. Dann wurde noch 30 min bei 60° gerührt, das Lsgm. abdestilliert, mit 20 ml H₂O versetzt und 3× mit je 20 ml CH₂Cl₂ extrahiert. Die nach dem Eindampfen der org. Phase und Zugabe von Et₂O gebildeten Kristalle wurden abfiltriert und i.HV. getrocknet: 1,18 g (95%) **15b**. Schmp. 76,2–78,2°. $[a]_p = -20,0 (c = 1,08, CHCl_3)$. IR: 3375*m*, 3310*m*, 3040*w*, 2990*w*, 2950*w*, 1730*s*, 1650*s*, 1530*s*, 1470*w*, 1385*m*, 1315*m*, 1280*m*, 1230*m*, 1200*m*, 1170*m*, 1090*w*, 1065*m*, 840*w*, 725*w*, 690*m*. 'H-NMR: 7,33 (*s*, 5 arom. H); 6,93 (br. *s*, NH); 4,90 (br. *d*, *J* = 3, PhCHOH); 3,92 (br. *d*, *J* = 3, PhCHOH); 3,63 (*s*, MeO); 1,48 (*s*, Me₂C). MS: 251 (5, *M*⁺), 192 (9), 164 (6), 144 (66), 117 (6), 116 (94), 108 (66), 107 (76), 105 (13), 102 (25), 101 (15), 87 (11), 84 (15), 79 (75), 77 (46), 73 (25), 70 (11), 59 (14), 58 (100), 51 (14), 42 (30). Anal. ber. für C₁₃H₁₇NO₄ (251,29): C 62,14, H 6,82, N 5,57; gef.: C 62,42, H 6,81, N 5,65.

4. (-)-(R)-2-[2-(tert-Butoxy)-2-phenylacetamido]-2-methylpropionsäure ('Bu-(R)-Mns-Aib-OH; **16b**). Eine Lsg. von 1,2 g (4,78 mmol) **15b**, 10 Tropfen konz. H_2SO_4 und 20 ml 2-Methylprop-1-en in 15 ml CH₂Cl₂ wurde 30 h bei RT. gerührt und die org. Phase 2× mit ges. NaHCO₃-Lsg. extrahiert. Abdampfen ergab ein viskoses Öl, das in 25 ml MeOH gelöst, mit 10 ml 1N NaOH versetzt und 4 h bei RT. gerührt wurde. Dann wurde MeOH abgedampft, die wässr. Phase 2× mit 15 ml Et₂O ausgeschüttelt und unter Kühlen mit NaH₂PO₄ angesäuert (pH 5). Dreimalige Extraktion mit 25 ml CH₂Cl₂ lieferte **16b** als festen Rückstand, der aus Et₂O kristallisiert wurde: 1,19 g (85%) **16b**. Schmp. 151,6–152,6°. $[a]_p = -22,8$ (c = 1,45, CHCl₃). IR: 3360m, 3040w, 2980m, 2940w, 1710s, 1635s, 1525s, 1460s, 1370m, 1305w, 1260m, 1200s, 1180s, 1090m, 1070m, 995w, 910m, 865w, 730w, 700w. 'H-NMR: 10,35 (br. s, COOH); 7,60 (br. s, NH); 7,55–7,15 (m, 5 arom H); 4,93 (s, PhCHO); 1,57, 1,53 (2s, Me₂C); 1,23 (s, t-Bu). MS: *M*⁺ nicht sichtbar, 163 (24), 118 (6), 108 (13), 107 (100), 79 (14), 58 (18), 57 (48). Anal. ber. für C₁₆H₂₃NO₄ (293,37): C 65,71, H 7,90, N 4,77; gef.: C 65,61, H 8,08, N 4,57.

5. (-)-(R,R)-2-{2-{2-{2-{2-{2-{2-{1-{ctert-Butoxy}}-2-phenylacetamido}-2-methylpropionato}-2-phenylacetamido}-N,N,2-trimethylpropionamid ('Bu-(R)-Mns-Aib-(R)-Mns-Aib-NMe₂; **17b**). Eine Lsg. von 200 mg (0,68 mmol) **16b** in 10 ml THF wurde mit 120 mg (0,74 mmol) CDI versetzt, 1 h bei RT. gerührt, dann mit 90 mg (0,68 mmol) **14** und 20 mg (0,22 mmol) Natrium-imidazolid versetzt, 12 h bei 40° gerührt und das THF abdestilliert. Dann wurden 20 ml Phosphatpuffer (pH 6,8) und 20 ml Et₂O zugegeben. Die Et₂O-Phase wurde je 2× mit 15 ml 1% H₂SO₄- und mit ges. NaHCO₃-Lsg. extrahiert, das Et₂O abdestilliert und der Rückstand aus Et₂O/Pentan umkristallisiert: 235 mg (64%) **17b**. Schmp. 178,8–179,8°. $[\alpha]_p = -28,7$ (c = 0,94, CHCl₃). IR: 3400m, 3280m, 3060w, 3040w, 2980w, 1750s, 1680s, 1625s, 1540m, 1520m, 1390m, 1370w, 1260w, 1150s, 1100m, 730w, 700m. 'H-NMR: 7,83 (br. s, NH); 7,55–7,15 (m, 10 arom. H, NH); 5,95 (s, PhCHO₂C); 4,87 (s, PhCH(t-BuO)); 2,83 (s, Me₂N); 1,53, 1,50 (2s, 2 Me₂C); 1,20 (s, t-Bu). MS: M^+ nicht sichtbar, 467 (27), 411 (11), 354 (12), 289 (23), 247 (12), 220 (47), 193 (9), 192 (20), 174 (13), 146 (35), 134 (9), 118 (26), 114 (9), 107 (86), 105 (9), 91 (7), 90 (14), 86 (10), 79 (15), 77 (9), 72 (15), 70 (31), 58 (100), 57 (55), 46 (58), 42 (18). Anal. ber. für C₁₀H₄₁N₀O₆ (539,68): C 66,77, H 7,66, N 7,79; gef.: C 66,49, H 7,80, N 7,70.

6. (-)-(R,R)-2-{2-[2-(2-Hydroxy-2-phenylacetamido)-2-methylpropionato]-2-phenylacetamido]-N,N,2trimethylpropionamid ((R)-Mns-Aib-(R)-Mns-Aib-NMe₂; **17c**). Eine Lsg. von 931 mg (3,92 mmol) **15a**, 5 Tropfen 2,5N HCl in MeCN und 550 mg (6,54 mmol) 3,4-Dihydro-2*H*-pyran in 20 ml MeCN wurde 2 h bei RT. gerührt, dann das Lsgm. abdestilliert und der ölige Rückstand 1 h i.HV. getrocknet. Dann wurden 25 ml abs. THF und 660 mg (4,07 mmol) CDI zugegeben und weitere 2 h bei RT. gerührt. Nach Zugabe von 768 mg (3,92 mmol) **14** und 50 mg (5,6 mmol) Natrium-imidazolid wurde das Gemisch 6 h bei 40° gerührt, das THF abdestilliert, und der Rückstand mit 30 ml MeCN/2N HCl 3:1 versetzt und 2 h bei RT. gerührt. Dann wurde mit 40 ml CH₂Cl₂ versetzt, die org. Phase abgetrennt und je 2× mit ges. NaHCO₃- und ges. NaCl-Lsg. ausgeschüttelt: 1,55 g (83%) DC-einheitliches Produkt als öliger Rückstand. Chromatographie an SiO₂ mit Et₂O/ Pentan 1:1 ergab 940 mg (51%) **17c**. Schmp. 96,1–96,5°. $[\alpha]_p = -10,7$ (c = 1,00, CHCl₃). IR: 3400m, 3290m, 3060w, 2995w, 2940w, 1750s, 1660s, 1620s, 1530s, 1500m, 1445m, 1400w, 1370m, 1280m, 1260m, 1140s, 1060w, 700w. 'H-NMR: 7,97, 7,63 (2 br. s, 2 NH); 7,5–7,15 (m, 10 arom. H); 5,83 (s, PhCHOCO); 5,05 (s, PhCHOH); 2,73 (s, Me₂N); 1,43, 1,37 (2s, Me₂C). MS: M⁺ nicht sichtbar, 220 (9), 192 (18), 191 (7), 157 (46), 146 (6), 118 (18), 114 (18), 107 (87), 105 (11), 90 (15), 86 (15), 84 (14), 79 (30), 77 (25), 72 (11), 70 (35), 69 (9), 58 (100), 57 (18), 42 (62). Anal. ber. für C₂₂H₃₃N₃O₆ (483,86): C 64,56, H 6,88, N 8,69; gef.: C 64,27, H 6,86, N 8,40.

7. (-)-(S)-2-(2-Hydroxy-3-phenylpropionamido)-N,N,2-trimethylpropionamid ((S)-Pms-Aib-(S)-Pms-Aib-NMe,; 18a). S. [3].

8. (-)-(S)-2-(2-Hydroxy-3-phenylpropionamido)-2-methylpropionsäure ((S)-Pms-Aib-(S)-Pms-Aib-OH; 18b). S. [3].

9. (--)-(S)-2-Methyl-2-{3-phenyl-2-[(tetrahydro-2H-pyran-2-yl)oxy]-propionamido}propionsäure (Thp-(S)-Pms-Aib-OH; **19**). Zu einer Lsg. von 1,0 g (3,98 mmol) **18b** in 25 ml abs. MeCN wurden 750 mg (8,9 mmol) 3,4-Dihydro-2H-pyran und 10 Tropfen 2,5N HCl in MeCN gegeben. Nach 2 h Rühren bei RT. wurde zur Trockene eingedampft und das Produkt mit Et₂O ausgefällt: 1,21 g (91%) **19** als Epimerengemisch. Schmp. 151,0-151,1°. [α]_p = -62,2 (c = 0,84, CHCl₃). IR: 3450m, 2940m, 2540w, 1715s, 1630s, 1535s, 1465s, 1310w, 1210s, 1180m, 1120m, 1070m, 1040m, 970m, 870w, 700w. ¹H-NMR: 10,23 (br. s, COOH); 7,37 (br. s, NH); 7,20 (s, 5 arom. H); 4,45-4,1 (m, PhCH₂CHO, OCHO); 3,95-3,6, 3,55-2,7 (m, CH₂O (Thp), PhCH₂CHO); 1,85-1,2 (m, 6 H von Thp); 1,50, 1,43 (2s, Me₂C). MS: M⁺ nicht sichtbar, 251 (5), 189 (10), 187 (5), 131 (9), 104 (5), 91 (86), 86 (6), 85 (100), 84 (8), 67 (9), 58 (26), 57 (9), 43 (12). Anal. ber. für C₁₈H₂₅NO₅ (335,41): C 64,64, H 7,51, N 4,18; gef.: C 64,37, H 7,40, N 4,03.

10. (-)-(S,S)-2-{2-[2-(2-Hydroxy-3-phenylpropionamido)-2-methylpropionato]-3-phenylpropionamido]-N,N,2-trimethylpropionamid ((S)-Pms-Aib-(S)-Pms-Aib-NMe₂; **20**). Zu einer Lsg. von 910 mg (2,73 mmol) **19** in 30 ml abs. THF wurden 510 mg (3,15 mmol) CDI gegeben und 1 h bei RT. gerührt. Dann wurden 728 mg (2,73 mmol) **18a** und 15 ml abs. THF zugegeben, es wurde mit 60 mg (0,66 mmol) Natrium-imidazolid versetzt und 8 h bei 50° gerührt. Nach dem Abdampfen des Lsgm. wurden 30 ml MeCN/1n HCl 3:1 zugegeben und 2 h bei RT. gerührt. Darauf wurde mit 40 ml CH₂Cl₂extrahiert und die org. Phase 2× mit ges. NaHCO₃- und ges. NaCl-Lsg. ausgeschüttelt, getrocknet (NaSO₄) und eingedampft: 1,2 g (86%) **20**, DC-einheitlich. Kristallisation aus Et₂O/Hexan ergab 1,0 g (72%) **20**. Schmp. 119,5–119,6°. $[\alpha]_p = -55,4$ (c = 0,95, CHCl₃). IR: 3400m, 3300m, 3060w, 2990w, 2940w, 1750s, 1650s, 1620s, 1540s, 1500m, 1455w, 1400w, 1290w, 1210w, 1145s, 1070w, 745w, 705m. 'H-NMR (200 MHz): 7,75 (br. *s*, NH); 7,45–7,1 (*m*, 10 arom. H); 7,02 (br. *s*, NH); 5,5–5,35 (*m*, X von *ABX*, PhCH₂CHOCO); 4,25–4,1 (*m*, X von *ABX*, PhCH₂CHOH); 3,45–2,8 (*m*, 2 *AB* von 2 *ABX*, 2 PhCH₂CH); 3,00 (*s*, Me₂N); 1,74 (br. *s*, OH); 1,54, 1,52, 1,36, 1,26 (4*s*, 2 Me₂C). MS: *M*⁺ nicht sichtbar, 439 (5), 382 (7), 234 (13), 206 (24), 189 (11), 188 (5), 157 (9), 132 (11), 121 (5), 114 (8), 103 (11), 92 (6), 91 (50), 84 (7), 77 (8), 72 (7), 70 (6), 65 (10), 58 (100), 46 (9), 42 (15). Anal. ber. für C₂₈H₃₇N₃O₆ (511,63): C 65,73, H 7,29, N 8,21; gef.: C 65,83, H 7,48, N 8,17.

11. (-)-(R, R)-3,3,9,9-Tetramethyl-6,12-diphenyl-1,7-dioxa-4,10-diazacyclododecan-2,5,8,11-tetron (cyclo[(*R*)-Mns-Aib-(*R*)-Mns-Aib]; **21**). Durch eine Suspension von 250 mg (0,52 mmol) **17c** in 70 ml abs. Toluol bei 100° wurde 7 min ein kräftiger Strom trockenes HCl-Gas geleitet, wobei eine klare Lsg. entstand. Dann wurde 30 min mit trockenem N₂ das überschüssige HCl verdrängt, Toluol abdestilliert und der Rückstand in 30 ml THF/Et₂O 1:1 suspendiert. Nach 30 min Rühren wurde das ausgefallene Me₂NH · HCl abfiltriert, das Lsgm. abgedampft und der amorphe Rückstand mit Et₂O/Pentan bis zur Analysenreinheit gewaschen: 200 mg (88%) **21**. Schmp. 88,3–89,3°. $[\alpha]_D = -18,6$ (c = 0,85, CHCl₃). IR: 3400m, 3300m, 3070w, 2995w, 2940w, 1750s, 1660s, 1540m, 1475m, 1390m, 1370w, 1260m, 1140s, 1065w, 1030w, 1005w, 760w, 735w, 700w. ¹H-NMR: 8,3–7,55 (m, 2 NH); 7,5–7,0 (m, 10 arom. H); 5,95–5,85 (br. s, 2 PhCHO); 1,7–1,0 (m, 2 Me₂C). ¹³C-NMR (100 MHz, (D₄)DMSO)²): 172,5, 172,1 (2s, 2 Lactam-CO); 166,6, 165,2 (2s, 2 Lacton-CO);

135,6, 134,6 (2s, 2 arom. C); 128,3, 128,1, 128,0, 127,8, 127,0, 126,7 (6d, 10 arom. C); 75,6–75,3 (br., 2 PhCHO); 55,1–54,7 (br. s, 2 Me₂C); 24,9–24,1 (br. m, 2 Me_2 C). MS: M^+ nicht sichtbar, 192 (5), 191 (7), 176 (5), 163 (7), 118 (37), 117 (5), 108 (38), 107 (100), 106 (12), 105 (32), 92 (8), 91 (18), 90 (31), 89 (18), 84 (16), 79 (52), 77 (46), 70 (38), 63 (9), 58 (53), 51 (23), 50 (10), 42 (74). Anal. ber. für $C_{24}H_{26}N_2O_6$ (438,49): C 65,74, H 5,98, N 6,39; gef.: C 65,62, H 6,18, N 6,16.

12. (-)-(S,S)-6,12-Dibenzyl-3,3,9,9-tetramethyl-1,7-dioxa-4,10-diazacyclododecan-2,5,8,11-tetron (cyclo[(S)-Pms-Aib-(S)-Pms-Aib]; 22). Durch eine Suspension von 400 mg (0,78 mmol) 20 in 60 ml abs. Toluol bei 100° wurde 6 min HCl-Gas geleitet und dann wie in *Exper. 11* beschrieben aufgearbeitet: 340 mg (93%) farbloser, amorpher Festkörper, der durch mehrmaliges Suspendieren in Et₂O/Pentan 1:10 und Filtration gereinigt wurde: 310 mg (85%) 22. Schmp. 100–101°. $[\alpha]_{\rm D} = -40,1$ (c = 0,85, CHCl₃). IR: 3400w, 3290m, 3060w, 3040w, 2990w, 2940w, 1750s, 1650s, 1550s, 1495w, 1470w, 1455m, 1390m, 1365w, 1270m, 1220w, 1140s, 1065w, 1040w, 750w, 700m. 'H-NMR: 8,35–7,85 (m, 2 NH); 7,45–6,75 (m, 10 arom. H); 5,5–4,9 (m, 2 PhCH₂CHO); 3,45–2,65 (m, 2 PhCH₂CHO); 1,75–1,0 (m, Me₂C). ¹³C-NMR (100 MHz, (D₆)DMSO, 60°): 171,2 (s, 2 Lactam-CO); 169,0 (s, 2 Lacton-CO); 136,0 (s, 2 arom. C); 128,9, 127,7, 127,5 (d, 10 arom. C); 74,1 (d, 2 PhCH₂CHO); 55,1 (s, 2 Me₂C); 37,0 (t, 2 PhCH₂CHO); 24,6, 23,9 (2q, 2 Me_2 C). MS: M^+ nicht sichtbar, 233 (7), 232 (36), 189 (6), 160 (23), 149 (6), 132 (8), 131 (14), 105 (7), 103 (9), 92 (9), 91 (54), 84 (84), 77 (12), 72 (100), 70 (7), 65 (13), 58 (28), 57 (25), 56 (12), 55 (12), 51 (10), 43 (45), 41 (57). Anal. ber. für C₂H₄m₃N₂O₆ (466,54): C 66,94, H 6,48, N 6,01; gef.: C 66,70, H 6,75, N 5,77.

LITERATURVERZEICHNIS

- [1] D. Obrecht, H. Heimgartner, Helv. Chim. Acta 1981, 64, 482.
- [2] D. Obrecht, H. Heimgartner, Tetrahedron Lett. 1983, 24, 1921; Helv. Chim. Acta 1987, 70, 329.
- [3] D. Obrecht, H. Heimgartner, Helv. Chim. Acta 1987, 70, 102.
- [4] D. Obrecht, H. Heimgartner, Helv. Chim. Acta 1984, 67, 526.
- [5] P. Wipf, H. Heimgartner, Helv. Chim. Acta 1986, 69, 1153.
- [6] P. Wipf, H. Heimgartner, Helv. Chim. Acta 1987, 70, 354.
- [7] P. Wipf, H. Heimgartner, Helv. Chim. Acta 1988, 71, 140.
- [8] M. Sahebi, P. Wipf, H. Heimgartner, Tetrahedron 1989, 45, 2999.
- [9] P. Wipf, H. Heimgartner, Helv. Chim. Acta 1990, 73, 13.
- [10] H. Heimgartner, Isr. J. Chem. 1986, 27, 3.
- [11] D. Obrecht, H. Heimgartner, Chimia 1982, 36, 78.
- [12] F. Stierli, D. Obrecht, H. Heimgartner, *Chimia* 1984, 38, 432; F. Stierli, Dissertation, Universität Zürich, 1986.
- [13] D. Obrecht, B. Scholl, H. Heimgartner, Helv. Chim. Acta 1985, 68, 465.
- [14] D. Obrecht, H. Heimgartner, Tetrahedron Lett. 1984, 25, 1717.
- [15] E. Schröder, K. Lübke, Experientia 1963, 19, 57.
- [16] H. A. James, 'MTP Internat. Rev. of Science, Org. Chem. Series One', Eds. D.H. Hey and D.I. John, Butterworths, London, 1973, Vol. 6, S. 213.
- [17] Yu.A. Ovchinnikov, A.V.T. Ivanov, 'MTP Internat. Rev. of Science, Org. Chem. Series Two', Ed. H.N. Rydon, Butterworths, London, 1976, Vol. 6, S. 219.
- [18] M. Dobler, 'Ionophores and Their Structures', John Wiley & Sons, New York, 1981.
- [19] D. Obrecht, Dissertation, Universität Zürich, 1983.
- [20] J. K. N. Jones, M. B. Perry, B. Shelton, D. J. Walton, Can. J. Chem. 1961, 39, 1005.
- [21] H. Kessler, Angew. Chem. 1982, 94, 509; E. Haslinger, H. Kalchhauser, Tetrahedron Lett. 1983, 24, 2553.
- [22] H.A. Staab, W. Rohr, A. Mannschreck, Angew. Chem. 1961, 73, 143.
- P. Ruggli, Liebigs Ann. Chem. 1912, 392, 92; ibid. 1913, 399, 174; ibid. 1917, 412, 1; K. Ziegler, H.
 Eberle, H. Ohlinger, ibid. 1933, 504, 94; K. Ziegler, in 'Houben-Weyl, Methoden der Organischen Chemie', Springer-Verlag, Stuttgart, 1955, Bd. 4/II, S.758.
- [24] K. Dietliker, H. Heimgartner, Helv. Chim. Acta 1983, 66, 262.

²) Aufgrund der Signale im ¹³C-NMR liegt 21 bei ca. 30° in zwei bevorzugten Konformationen vor. Im entsprechenden Spektrum bei 80° treten nur noch je ein Signal für die Lactam-CO und Lacton-CO und nur noch 4 Signale für arom. C auf.